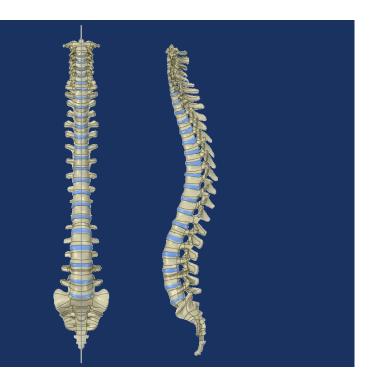


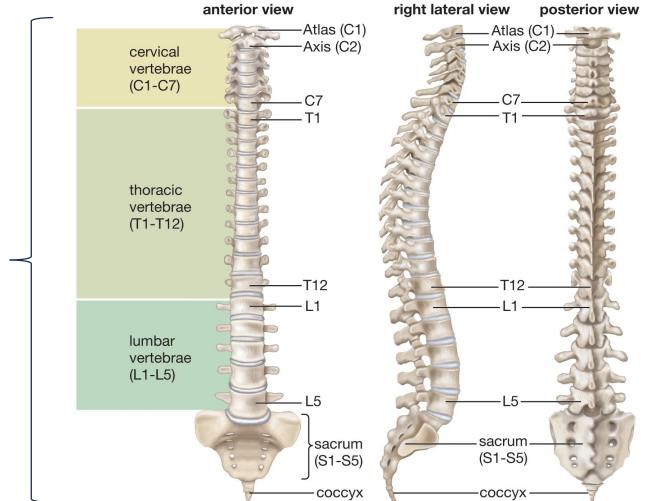
FINITE ELEMENT MODELING AND ANALYSIS OF THE HUMAN SPINE

Presenter:


Dr. Laleh Fatahi

Assistant Professor

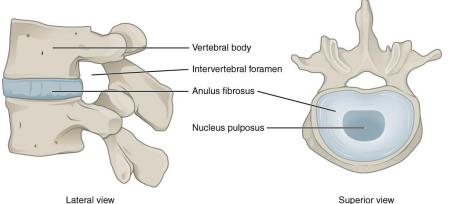
Department of Mechanical Engineering


Shahid Chamran University of Ahvaz, Iran

http://eng.scu.ac.ir/~lfatahi

STRUCTURE OF THE SPINE

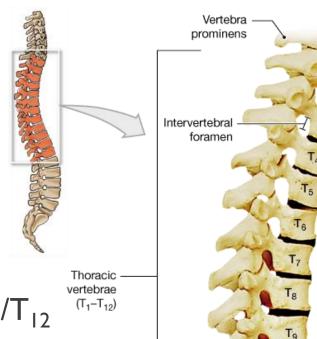



33 Vertebrae

STRUCTURE OF THE SPINE

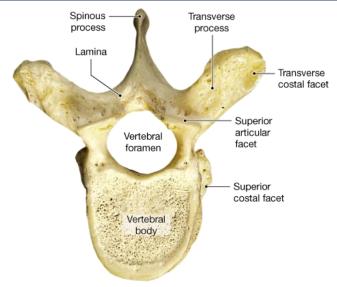
- Vertebral Column
- Motion Segment
- Intervertebral Discs
 - Annulus Fibrosus
 - Nucleus Pulposus

CERVICAL VERTEBRAE

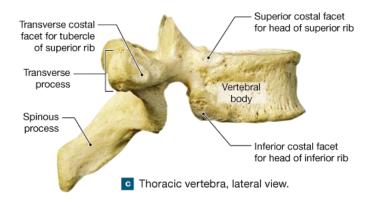


- Typical C₃-C₄-C₅-C₆
- Atypical vertebral C₁/C₂ C₇

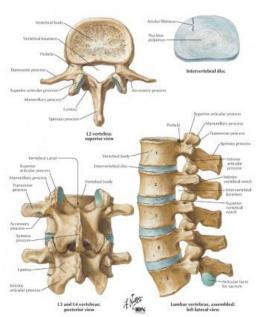
THORACIC VERTEBRAE



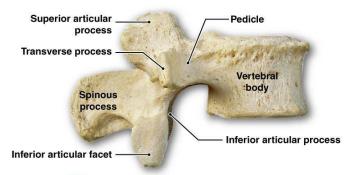
- Typical vertebrae T₂-T₉
- Atypical vertebrae T₁/T₁₀/T₁₁/T₁₂


THORACIC VERTEBRAE

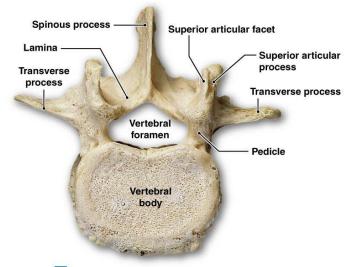
- I spinous process
- 2 transverse process
- 2 superior facet
- 2 inferior facet


b Thoracic vertebra, superior view.

LUMBAR VERTEBRAE

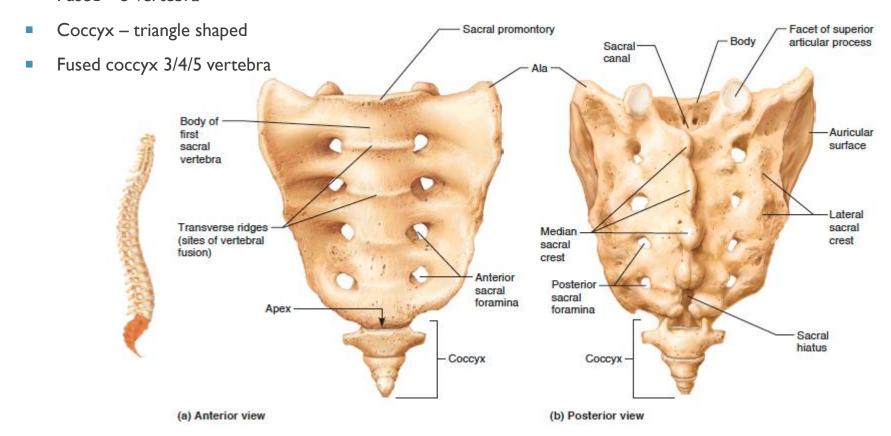


- Typical vertebra: L1-L4
- Atypical vertebra: L5

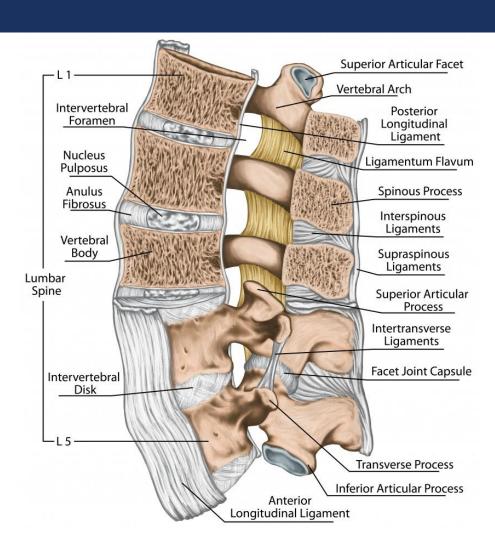


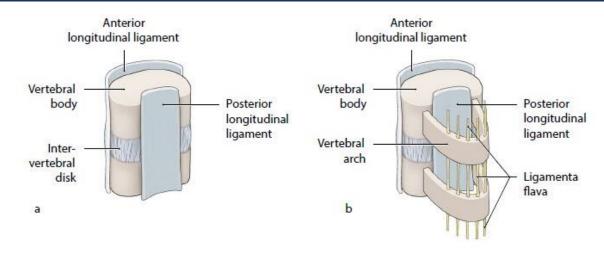
 A lateral view of the lumbar vertebrae, sacrum, and coccyx

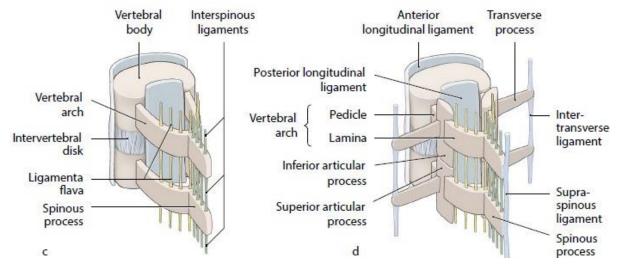
b A lateral view of a typical lumbar vertebra

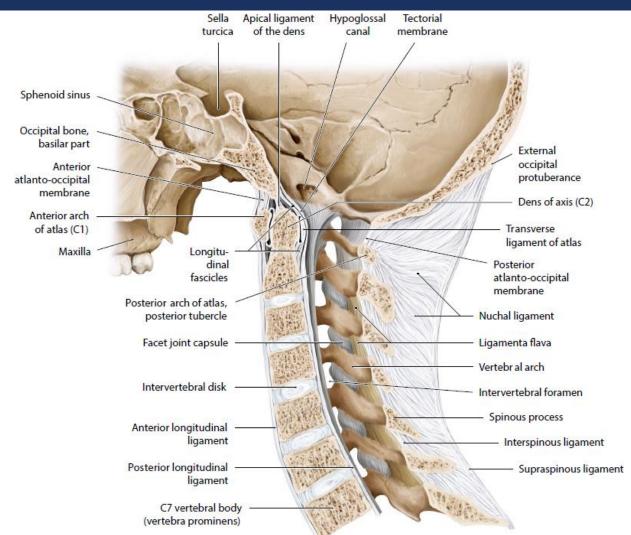


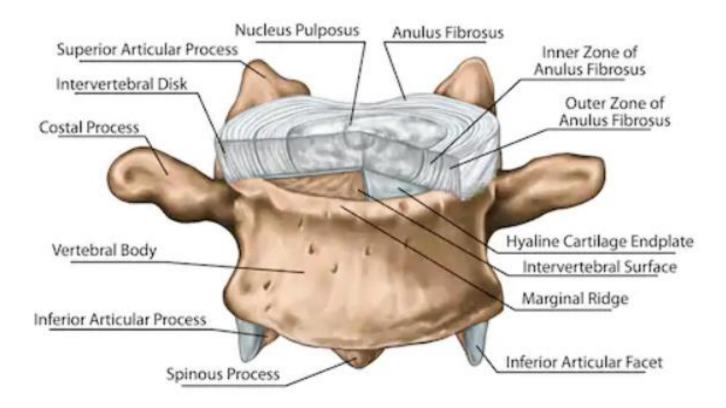
A superior view of the same vertebra shown in part b


SACRUM AND COCCYX


- Sacrum triangular shaped
- Fused 5 vertebra





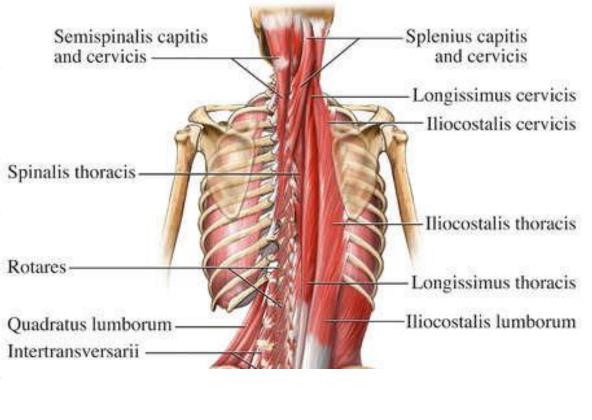


- Give strength to spinal column
- Keep vertebrae in alignment
- Keep discs in position
- Can become damaged through over stretching
- Have a poor blood supply, and therefore a slow recovery from damage

INTERVERTEBRAL DISKS

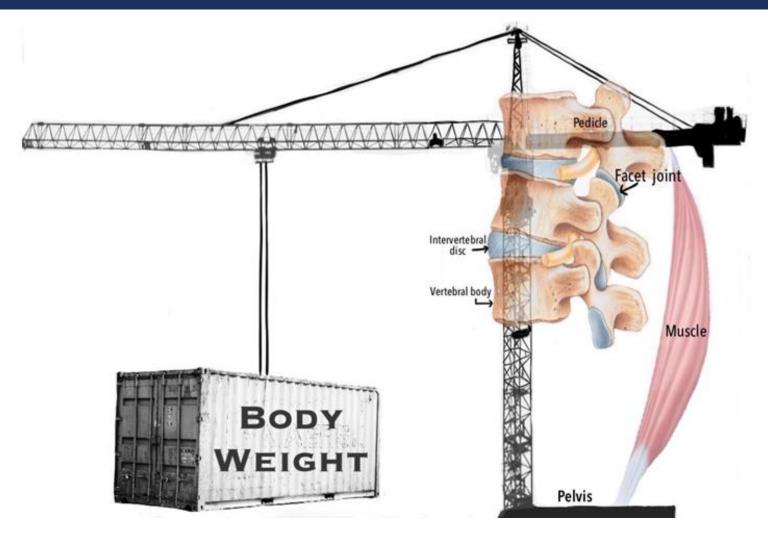
INTERVERTEBRAL DISCS

- Occur between each vertebra and are made up of an annulus and a nucleus.
- Act as separator and shock absorber.
- Pressure within discs can be kept low by maintaining natural curves of the spine and frequent postural changes.
- A healthy back needs all components of the spine to be in good working order



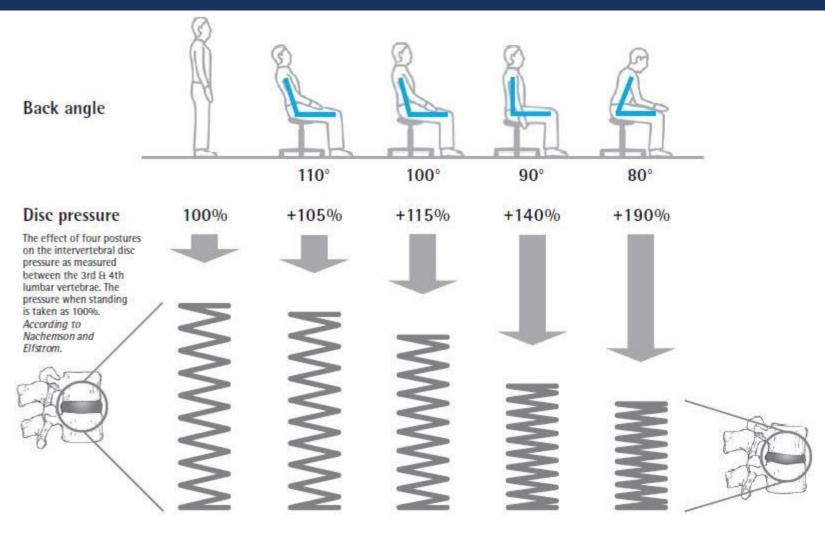
- Work in pairs to maintain postural control.
- Abdominal muscles are important in reducing the stress of lifting.
- Muscle strength and balance
- They are important in maintaining a healthy back.

LUMBAR MUSCLES

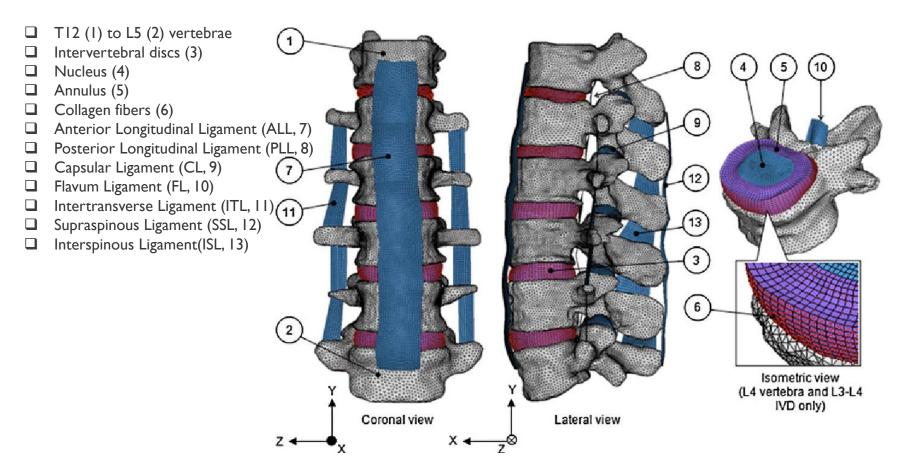


LUMBAR MUSCLES	FUNCTION
Psoas Major	Flexes thigh at hip joint & vertebral column
Intertransversarii Lateralis	Lateral flexion of vertebral column
Quadratus Lumborum	Lateral flexion of vertebral column
Interspinales	Extends vertebral column
Intertransversarii Mediales	Lateral flexion of vertebral column
Multifidus	Extends & rotates vertebral column
Longissimus Lumborum	Extends & rotates vertebral column
lliocostalis Lumborum	Extension, lateral flexion of vertebral column, rib rotation

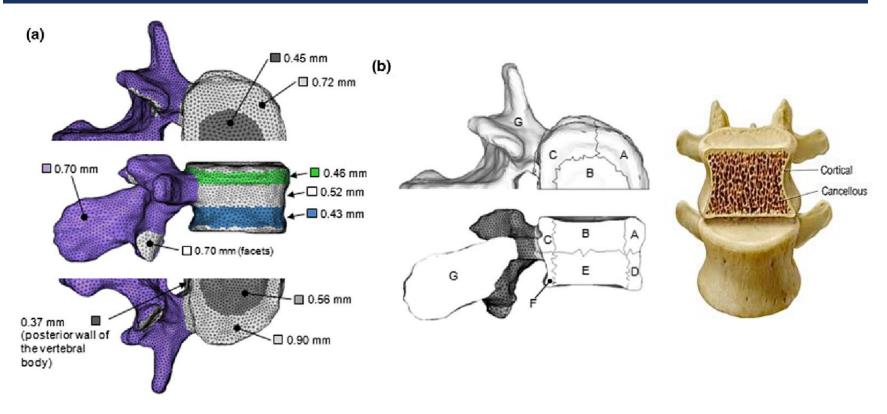
THE SPINE WORKS LIKE A CRANE


DISC PRESSURE RELATED TO POSTURE AND MUSCULATURE

- The weight of your body acts as a compressive and shear forces that in younger people, the intervertebral discs bear most of this load.
- After the discs degenerate, more pressure is transferred to the facet joints in the back, causing arthritis in these synovial joints.
- Cervical Disc Pressure:
 - Correct alignment & muscular support = 5.6kg/cm2
 - Incorrect alignment without correct muscular support = 40kg/cm2


HOW POSTURE AFFECTS DISC PRESSURE

FINITE ELEMENT MODEL OF T12-L5 SEGMENT OF THE SPINE



Wagnac, E., Arnoux, P. J., Garo, A., & Aubin, C. E. (2012). Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. *Medical & biological engineering & computing*, 50(9), 903-915.

CORTICAL AND CANCELLOUS BONES

- (a) Subdivision of the vertebrae into nine zones of different cortical bone thicknesses
- (b) Subdivision of the cancellous bone into seven zones of different material properties

MECHANICAL PROPERTIES OF BONY TISSUES

Material properties	Cancellous bone (per zone) and bony endplate center ^a							Cortical bone and bony	
	A	В	С	D	Е	F	G	endplate margin	
Density ($\times 10^{-3}$ g/mm ³)	1.8	1.8	2.0	2.0	2.5	2.5	1.8	0.2	
Modulus of elasticity, E (MPa)	93.7	93.7	93.7	93.7	93.7	93.7	93.7	4,014	
Poisson's ratio, v	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.3	
Yield stress, a (MPa)	1.95	1.95	1.95	1.95	1.95	1.95	1.95	105	
Hardening modulus, b (MPa)	8.5	7.0	8.5	8.1	12.5	12.5	7.0	492.9	
Hardening exponent, n	1	1	1	1	1	1	1	1	
Failure plastic strain, ε_p	0.082	0.06	0.082	0.08	0.104	0.104	0.06	0.071	
Maximum stress (MPa)	2.65	2.3	2.65	2.6	3.25	3.25	2.3	140	
Strain rate coefficient, c	0.533	0.533	0.533	0.533	0.533	0.533	0.533	0.272	
Reference strain rate, $\dot{\epsilon}_0$	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	

^a Material properties used for the bony endplate center are the same as zone B Wagnac, E., Arnoux, P. J., Garo, A., & Aubin, C. E. (2012). Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. *Medical & biological engineering & computing*, 50(9), 903-915.

MECHANICAL PROPERTIES OF THE SOFT TISSUES

Ö	
2	
=	
\Box	
_	
ಡ	
<u>_</u>	
٩	
æ	
Ţ	
<u>a</u>	
Š	
_	
Φ	
1	
_	

Spinal Ligaments

Material properties	Nucleus pulposus		Annulus matrix	Fibers	
	Low dyn.	High dyn.	Low dyn.	High dyn.	
ı.					
Density (E ⁻⁶ kg/mm ³)	1	1	1.2	1.2	_
Poisson's ratio, v	0.499	0.499	0.45	0.45	_
C_{10}	0.64	31.8	0.24	11.8	_
C_{01}	-0.16	-8.0	-0.06	-2.9	_
Load-disp. curve	_	_	_	_	Nonlinear

1 1								
	ALL	PLL	CL	LF	ISL	SSL	ITL	
b.								
Density (E ⁻⁶ kg/mm ³)	1	1	1	1	1	1	1	
Modulus of elasticity E (MPa)	19.2	84.1	0.6	4.2	4.7	10.2	4.7	
Poisson's ratio, v	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
Update coef., E_1 (MPa/ms)	469.4	1,432.1	3.6	199.7	98.3	476.5	98.3	
Update coef., E_2 (MPa)	19.0	83.5	0.6	4.0	4.6	10.0	4.6	
Failure strain, ε_1	0.68	0.38	1.75	1.01	1.10	0.94	1.10	
Failure strain, ε_2	0.90	0.50	1.85	1.25	1.30	1.08	1.30	
Scaling function, SF	Tabulated	l curves						

Wagnac, E., Arnoux, P. J., Garo, A., & Aubin, C. E. (2012). Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. *Medical & biological engineering & computing*, 50(9), 903-915.

MECHANICAL PROPERTIES OF THE THORACOLUMBAR-PELVIS COMPLEX

Component	Young's Modulus (MPa)	Poisson's Ratio	Density (kg/mm²)	Cross-Section Area (mm²)
Cortical bone	14,000	0.30	1.83E-06	
Cancellous bone	100	0.2	0.17E-06	
Posterior elements	3,500	0.25	1.83E-06	
Endplate	10,000	0.25	1.06E-06	
Pelvis	5,000	0.2	1.83E-06	
Annulus	Mooney-Rivlin c = 0.1	8, c = 0.045	1.0E-06	
Nucleus pulpous	Mooney-Rivlin $c1 = 0$.	12, c2 = 0.03	1.2E-06	
Collagenous fiber	Calibrated stress-strain	curves		
Ligament				
ALL	Calibrated deflection-fo	orce curves	1.0E-06	63.7
PLL	Calibrated force-deflect	tion curves	1.0E-06	20
FL			1.0E-06	40
ITL			1.0E-06	3.6
ISL			1.0E-06	40
SSL			1.0E-06	30
CL			1.0E-06	60

Note: ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament; FL, ligamentum flavum; ITL, intertransverse ligament; ISL, interspinous ligament; SSL, supraspinous ligament; CL, capsular ligament.